4-[2-(2-chloro-4-fluoroanilino)-5-methyl-4-pyrimidinyl]-N-[(1S)-1-(3-chlorophenyl)-2-hydroxyethyl]-1H-pyrrole-2-carboxamide and Disease-Models--Animal

4-[2-(2-chloro-4-fluoroanilino)-5-methyl-4-pyrimidinyl]-N-[(1S)-1-(3-chlorophenyl)-2-hydroxyethyl]-1H-pyrrole-2-carboxamide has been researched along with Disease-Models--Animal* in 3 studies

Other Studies

3 other study(ies) available for 4-[2-(2-chloro-4-fluoroanilino)-5-methyl-4-pyrimidinyl]-N-[(1S)-1-(3-chlorophenyl)-2-hydroxyethyl]-1H-pyrrole-2-carboxamide and Disease-Models--Animal

ArticleYear
VX-11e protects articular cartilage and subchondral bone in osteoarthritis by inhibiting the RIP1/RIP3/MLKL and MAPK signaling pathways.
    Bioorganic chemistry, 2022, Volume: 120

    Necroptosis of chondrocytes contributes to the progression of osteoarthritis (OA). Recent studies have shown that VX-11e, an ERK inhibitor, exhibited a contrasting expression pattern to RIP3, the key protein of necroptosis. However, its effect on OA remains to be determined. Therefore, we investigated whether VX-11e affected the loss of articular cartilage and subchondral bone during OA. In in vivo experiments, a mouse OA model induced by medial meniscus instability (destabilization of the medial meniscus [DMM]) was used. In in vitro experiments, interleukin-1β (IL-1β) was used to simulate the inflammatory microenvironment of chondrocytes, and RANKL was used to induce osteoclast differentiation. Histological analysis, cell viability experiments, high-density cell culture experiments, immunofluorescence assay, western blot assay, quantitative PCR, and molecular docking experiments were conducted to determine the protective effect of VX-11e on articular cartilage during OA. We also performed histological analysis, tartrate-resistant acid phosphatase (TRAP) staining, F-actin ring formation test, quantitative PCR, and western blot assay to study the effect of VX-11e on subchondral bone during OA progression. We found that after the medial meniscus was severed, the articular cartilage of the mice showed pathological changes, accompanied with the loss of subchondral bone. However, an intraperitoneal injection of VX-11e protected the cartilage and subchondral bone of the mouse knee joint. The results of in vitro experiments showed that VX-11e promoted the anabolism of the extracellular matrix of chondrocytes by inhibiting the expression and phosphorylation of RIP3 and MLKL. VX-11e also inhibited RANKL-induced osteoclast differentiation by inhibiting the ERK/RSK signaling pathway, but not the NF-κB pathway. Overall, VX-11e inhibited the loss of articular cartilage and subchondral bone during OA by regulating the RIP1/RIP3/MLKL and MAPK signaling pathways.

    Topics: Animals; Cartilage, Articular; Chondrocytes; Disease Models, Animal; Mice; Molecular Docking Simulation; Osteoarthritis; Protein Kinases; Pyrimidines; Pyrroles; Signal Transduction

2022
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Vx-11e protects against titanium-particle-induced osteolysis and osteoclastogenesis by supressing ERK activity.
    Biochemical and biophysical research communications, 2019, 07-05, Volume: 514, Issue:4

    Wear particle-induced osteolysis around the prosthesis is the most common long-term complication after total joint replacement surgery which often leads to aseptic loosening of the prosthesis. Osteoclasts play key roles in the osteolytic process. Currently there is a lack of clinically effective measures to prevent or treat peri-prosthetic osteolysis and thus identification of new agents that can inhibit the enhanced osteoclastic bone resorption is warranted. Through this study, we discovered that the specific and potent ERK1/2 inhibitor, Vx-11e, can protect against calvarial osteolysis caused by titanium (Ti) particles in vivo. Low doses of Vx-11e mildly reduced osteoclast resorption whilst no calvarial osteolysis was observed with high dose Vx-11e treatment. Histological examination showed fewer osteoclasts and reduced bone erosion in the Vx-11e treated groups. In vitro cellular analyses showed that Vx-11e inhibited osteoclast formation from BMM precursors in response to RANKL, as well as bone resorption by mature osteoclasts. Mechanistically, Vx-11e impaired RANKL-induced ERK1/2 signaling by inhibiting its kinase activity thereby blocking the phosphorylation of downstream substrates. Moreover, Vx-11e significantly reduced the expression of RANKL-mediated genes such as ACP5/TRAcP, CTR, MMP-9, CTSK. Collectively, our data provides evidence for the potential therapeutic use of Vx-11e for the treatment of osteolysis diseases caused by extremely actived osteoclastogenesis.

    Topics: Animals; Cell Survival; Cells, Cultured; Disease Models, Animal; Dose-Response Relationship, Drug; Extracellular Signal-Regulated MAP Kinases; Male; Mice; Mice, Inbred C57BL; Osteoclasts; Osteogenesis; Particle Size; Protective Agents; Protein Kinase Inhibitors; Pyrimidines; Pyrroles; Titanium

2019